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Abstract—In this paper we define a broadcast channel access protocol
called spatial TDMA, which is designed specifically to. operate in a
mutlihop packet radio environment where the location of the nodes of the
network is assumed to be fixed. The defined protocol assigns transmission
rights to nodes in the network in a local TDMA fashion and is collision-
free. Methods for determining slot allocations are developed, and an
approximate solution is given for determining the assignment of capaci-
ties for the links of the network that minimizes the average delay of
messages in the system.

1. INTRODUCTION

ETWORKS have traditionally consisted of a set of

switches connected together by some form of cable.
Because cable must be strung point-to-point and requires land
acquisition and construction of supporting structures, the
design of such networks requires careful, long-range plan-
ning. and it is not surprising that considerable research has
been devoted to the problems of this initial design. An
example of a problem that has been extensively studied arises
when the locations of the nodes of the network and their
traffic characteristics are assumed to be known. In this case,
one must determine a procedure for choosing the capacities
of the communication lines. Since the cost of the network is
an increasing function of these capacities, it is important that
the designer of such a network selects the assignment of the
capacity of -the links of the network to minimize network
expense, while preserving a tolerable delay for messages in
the system. Various solutions [1]-[4] have been proposed for
this, and other problems of a similar genre, which are
commonly classified as capacity assignment problems. As
one can expect, however, network specifications often
change, and an optimal design for an initial network may be
far from optimal after changes are made either to the traffic
characteristics of the nodes or to the network’s topological
structure. Indeed, even the minor change of optimally adding
one new node to a wire network can be a formidable
problem. Besides the difficulty of connecting cable from the
new node to its adjacent neighbors, one must also solve the
capacity assignment problem again for the changed network.
If the traffic offered by the new node changes the loads on the
links of the already existing network, then some of the links
will need to be upgraded to higher capacities. Likewise,
other links might be able to have their capacities reduced if
some of the flow through them can be routed over the new
lines. Upgrading existing lines, however, is expensive, and
the cost of preserving this optimality in the network after the
addition of a new node could be so formidable that the
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designer would have to settle for a less than optimal solution.
As the process of adding new nodes to the network
continued, it would not be surprising to see performance
seriously deteriorate.

To avoid these problems, one needs to use a more flexible
medium for interconnecting the switches of the network. A
broadcast medium such as radio offers flexibility to topologi-
cal changes, and has the property that capacities can be
changed to reflect alterations in the specifications of the
network. The problem of readjusting channel capacities in an
optimal manner is not straightforward, and depends upon the
channel access protocol used by the nodes of the network. In
this paper we propose a collision-free channel access
protocol for a packet radio. The protocol operates in a packet
radio environment in which the location of the nodes of the
network are assumed to be fixed and known. We also assume
that time is divided into slots equal in length to the amount of
time it takes to transmit one packet over the channel, and that
all nodes are synchronized as to slot boundaries. We also
assume that nodes are synchronized as to the beginning of
time cycles, which are defined later in the paper. Because the
protocol is collision-free, calculating the capacity of the
channels linking the nodes of the network is straightforward,
and this capacity can be changed in accordance with changing
network conditions. An outline of the paper is as follows. In
Section II of the paper we describe the protocol, and in
Section III we formulate a fluid approximation to determine
its delay characteristics and compare the approximation to
simulation results. In Section IV we formulate a mathemati-
cal program that is used to solve the capacity assignment
problem for networks using this protocol.

II. DESCRIPTION OF THE PROTOCOL

Spatial TDMA is a generalization of the TDMA protocol
for multihop networks. Each frame of the protocol consists
of a number of slots that are allocated to a set of noninter-
fering transmissions in the network. To best see the operation
of the protocol, consider the network shown in Fig. 1. In this
figure, a directed arc from node i to node j indicates that node
J can hear a transmission from node /. When a transmission
takes place over an arc of the network, we say that arc is
enabled. This happens when a node transmits a message
addressed towards its neighboring node that is incident on the
directed arc. From this graph one can see that if node 2
transmitted to node 1 (arc 2 is enabled), 1’s reception would
not be interfered with if node 5 also was sending a message to
node 6. One could thus conclude that simultaneous enabling
of arcs 2 and 9, as labeled in the figure, does not result in a
collision at nodes 1 or 6. In order to formalize this
observation, we define a compatibility matrix which is a
symmetric binary (m X m) where m is the number of arcs in
the directed graph. A 1 in the (i, j) position of the
compatibility matrix indicates that arcs / and j can be
simultaneously enabled without causing a collision at either
of their respective destinations in the network. The compati-
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Fig. 1.

A sample network.

bility matrix for the network of Fig. 1 is given by

100001000 1]
0100100010
0010000010
000100000 1
0100101011
CM =1 {000010111
0000101000
0000010100
0110110010
1001110001

Using this matrix, one can generate a set of cligues,
containing arcs having the property that all arcs in the same
clique can be simultaneously enabled without causing any
collision in the network. This is done by using the matrix CM
as if it were the adjacency matrix for a graph and then
running maximal cliques algorithms on this graph. If we let
C; denote the ith clique, we can form a clique cover, C,
which is a set of maximal cliques C = {C), Cy, - **, Ci}
having the property that every arc of the network is contained
in at least one member of C. Note that one possible clique
cover is the set of all maximal cliques.

Spatial TDMA works in the following manner. For each
clique C; in a given clique cover C, we assign an integral
number of slots ¢; from a given fixed total number of T slots
that make up a cycle that repeats over time. This cycle is very
much like a TDMA frame in that if the vth slot of the cycle is
assigned to clique /, i.e., is one of the ¢ slots, then all arcs in
clique i are allowed to be enabled during the vth slot. From
the way cliques are assigned slots in a cycle, collisions are
avoided at all the recipients of these packets. Each slot from
the cycle is assigned to a unique clique from the clique cover.
Since any particular arc can be contained in more than one
clique, the times during which an arc is enabled depend upon
the slots assigned to the cliques of which it is a member.
Thus, the capacity of an arc in a spatial TDMA network
depends upon the total amount of time from the cycle that the
arc is assigned permission to transmit. For example, one
clique cover for the network of Fig. 1 is given by

C={CI) CZ: C3a CA’ CS’ CS}
where
Ci={1,6, 10} C,={2,5 9} C;={3,9
C4= {4, 10} C5={5, 7} C6={6, 8}

Suppose for this clique cover we assignatotalof ¢;, i = 1, 2,
-+, 6 slots, from a cycle of T slots, for the ith clique of the
clique cover. For this assignment, out of T slots of the cycle,
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arc 5 is enabled for a total of £, + ¢ slots. We will
distinguish the traffic arriving at a given node into classes
where there is a class for each possible neighboring node to
which the given node can transmit. Thus, nods 2 has 3
classes of traffic (i.e., a class for each possible destination
node 1, 3, 5). The overall network thus acts like a multiclass
open network of queues. In the next section we will create an
approximation to the mean system delay for messages in such
a network.

It should be mentioned that the ¢; slots allocated to the ith
clique do not necessarily need to be contiguous within the
cycle. In fact, as we will later see, there are good reasons to
attempt to distribute slots allocated to one clique uniformly
over the duration of the cycle. We should also note that
synchronization in a packet radio network implies that each
slot is expanded by a guard time which is used to offset the
varying geographical distances between nodes. The capacity
of the channel lost to this guard band is not taken into account
in our calculations of delay performance. Thus, our calcula-
tions of the mean system delay are lower than what we would
obtain if this lost capacity were accounted for.in the analysis.

We should also point out that an alternative to spatial
TDMA could be spatial FDMA, in which nonoverlapping
frequency bands would be assigned to each clique in the
network. This protocol, however, would suffer from lost
capacity due to the guard bands separating each frequency
band, and would not be as adaptable as spatial TDMA to the
addition or deletion of nodes in the network. Additionally,
changing the capacity of arcs in the network to adapt to
changing traffic patterns would be more difficult using
spatial FDMA.

III. DELAY ANALYSIS

In this section we develop an approximation to the mean
system delay for messages in the network. The network is a
multiclass open queueing network where each node has a
class of traffic for each of its neighboring nodes to which it
can transmit. If we let ;¢ be the amount of traffic per cycle
passing through node i of message class ¢, then a; = Te aiis
the total traffic passing through the node i per cycle. This
traffic consists of packets being routed through the ith node
(the network is a multihop network) and also of arrivals from
the attached host computer. Let v be the average amount of
external traffic into the network per cycle and denote D;“(¢), ¢
= (&, tzs ***, 1) where k is-the number of cliques in the
clique cover and ¢ is the number of slots allocated to clique i
from the cycle of length T = T} ¢, to be the average system
delay experienced by a class ¢ job passing through node i.
The mean system delay of messages in the network is given
by

a; a,~”

D=3 — {2 — Df(t)} : ()
i 7 4 @
An éxact analysis for the average system delay has not been
carried out for (1), and appears to be very difficult. Thus,
Section ITI-A develops an approximation for D;(f) and then
Section III-B compares the approximation to simulation
results.

A. Queueing Approximation

In this section we will describe an algorithm for approxi-
mating the average system delay of a single class of messages
passing through a single node using spatial TDMA. To avoid
cumbersome notation, we will eliminate the subscript of i and
superscript of ¢ on the variables defined in this section, and
when we speak of arrivals or departures we implicitly mean
those of the given class of messages at the given node under
consideration. We note that for ¢, fixed arrivals of a given
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Fig. 2. Model of queue for nodes in the network.

class are independent of those of other classes and do not
influence the queueing times of other classes. The queueing
system at a given node created by this protocol consists of
nonoverlapping internal arrival (arrivals from other nodes of
the network), service (times when the node can transmit
packets of that class), and idle periods (times during which
the node cannot receive or transmit packets) which are
enabled during specific periods of the cycle. We will call the
activity pattern for a particular class at a particular node a
node-class-frame or simply a frame for short. As an
example in Fig. 2, we have shown the queueing system that is
formed by a single class of packets at a single node of a
spatial TDMA network, and also show its corresponding
frame (for that class of packets) in Fig. 3. The cycle time for
the system shown in Fig. 3 consists of 7 = 100 slots. The
queue contains two switches S1 and S2, which are used to
control the internal input and service processes. At most one
of these switches can be closed during a given slot of the
frame, since we do not allow simultaneous reception and
transmission by radios in the network. During the first 20
slots of the frame in Fig. 3, we see an internal arrival
interval, during which S1 is closed (S2 will be open), i.e.,
arrivals enter from inside the network. Note that arrivals
from the attached host computer, called external arrivals,
can also occur during this time. We will model the internal
arrival process as Bernoulli process with a probability A, of
having a packet arrive in the slot. This is an approximation to
the actual arrival process, which is composed of departures
from other nodes in the network. With our assumption for an
internal arrival interval of m slots, if we let P[k internal|m]
be the probability that k internal arrivals occur in m slots, we
have

Pk intemdlm]:('Z) A (1 = N) ™=k
k=0,1, ---, m. 2

During the next phase of the frame, a service interval of 10
units in which S2 is closed (S1 is open), packets are served at
the rate of one per slot. During this time at most 10 packets
can be transmitted. The next phase we show is an idle
interval during which both S1 and $2 are open and no
internal arrivals or services are allowed. During this time,
and over the entire frame, external messages (from the
node’s attached host) can arrive. These are also assumed to
arrive from a Bernoulli process and, as shown in Fig. 2,
immediately enter the tail of the queue with a probability A,
of having a packet arrive in a slot. The probability that k
external arrivals occur in m slots is given by (2) with \;,
replaced by .. In summary, the queueing operation of the
network consists of switches S1 and S2 turning on and off
according to the time patterns depicted in Fig. 3 and
continuing to cycle every 100 slots.

To approximate the mean system delay we use a fluid
approximation [5]. This approximation was found to give
good results, and we will illustrate this method using Fig. 4.
In the fluid approximation, waiting times are calculated by
assuming that the actual, stochastically varying backlog of
packets in the queue is approximated by the expected
backlog. In Fig. 4 we have plotted the growth of the expected
backlog of packets in the system during the course of the
frame shown in Fig. 3. For reasons to be explained later, we
have started this growth pattern at the beginning of the last
idle interval (i.e., at # = 90). During this interval, since
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internal arrivals are prohibited, only external arrivals can
add to the backlog. The rate (per slot) at which the queue
increases during an idle period is A, packets per slot, and in
Fig. 4 we see that the expected backlog grows linearly with
this slope during this interval. As the frame progresses to the
first internal arrival interval, the growth rate for the backlog
is given by Aex + A, packets per slot. A service period
follows in the next interval and the backlog drops by a rate of
Aex — 1 =< 0 packets per slot. As seen in Fig. 4 (points 25—
30), the backlog of packets in the queue drops to zero before
the service interval is finished. External arrivals during this
time are assumed to be immediately serviced and, thus, do
not contribute to the backlog. This process continues in this
manner until the last idle period, at which point it starts from
a zero backlog once again. We will call a point on a node-
class-frame a zero-point if, starting with an empty queue at
this point, it yields an average backlog of zero after exactly
one cycle. From the figure it is clear that points in (25-30)
and (75-90) are zero points. For a fluid approximation, this
implies that all packets that arrived in the frame are serviced
(i.e., a zero-point is a regenerative point for the frame). Let
T = T t; be the length of the frame, and let T4, Ty, and T
be the total amount of time from the frame for idle, internal
arrival, and service periods, respectively. The area under the
backlog curve represents the number of packet-seconds
accumulated during the frame. Dividing this by the average
number of packets that arrive during the frame, A,T +
AT, gives, by Little’s result {6], the average time spent in
the queueing system. Because we began the calculation at a
zero-point, packet delays for all arrivals to the frame are
counted. The utilzation p of the system due to that class of
customers is equal to the average number of packets entering
the system during a cycle divided by the maximum number
that could be serviced, and thus, we have p = (AT +
AinTin)/ T. It is clear that because of the fluid approximation,
we can always find a zero-point on any frame satisfying p <
1.

This then describes the algorithm for the system delay
approximation to (1) for a single class of traffic at a node,
which we summarize as follows.

1) Find a zero-point.

2) Calculate the area under the backlog curve.

3) Divide this area by AT + MN,7;, to arrive at the
average system delay.

The ordering of the intervals and their lengths, i.e., the
choice of 7, greatly influence the average system delay.
Suppose, for example, that we change the frame in Fig. 3 by
coalescing all the service and intervals together and placing
them on the frame, as shown in Fig. 5. Although this frame
has exactly the same interval lengths (and thus the same
utilization), this translation increases the average system
delay (in fact, it is a worst case example). In this system, any
messages that arrive during the internal arrival interval must
wait at least 30 time units before being serviced. If the
service and internal arrival intervals are interchanged, it is
clear that the average system delay would decrease by at least
this much. In fact, the system that has the minimum average
system delay is one that spreads arrival and service intervals
in infinitesimal units that alternate with each other. In this
way, an arrival is immediately serviced in the following
interval after accruing little waiting time. In a practical
implementation of spatial TDMA there are limits to how
small one can make interval sizes, since radios have a finite
switching time between transmission and reception. Note
that choosing a frame pattern that minimizes the system delay
for one particular class at one particular queue in the network
does not, in general, decrease the mean system delay for all
of the messages in the netwoik. In fact, finding the slot
allocation that does achieve the minimum system delay for all
messages in the network is a very difficult problem.
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Fig. 3. An example time frame.
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Fig. 4. The backlog for the time frame of Fig. 3.
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IDLE 0O}
SERVICE -1.0 4
20 L I 1 I 1 ! ! L ]
~0.0 100 20.0 300 400 50.0 60.0 700 80.0 900 1000
TIME
Fig. 5. A worst case time frame.

B. Discussion of Delay Results

In this section we compare simulation results to those
found using the fluid approximation described in the previous
section. The model we simulated consisted of a single spatial
TDMA node and we obtained the mean delay of messages of
a single class. To do this, we randomly generated many nodal
frames that had the same input parameters T, Tiy, Ty, T, and
Nin» Aex and results of the simulation checked against those of
the approximation. Three such frames are shown in Fig. 6,
where + | steps correspond to internal arrival intervals, O to
idle intervals, and — 1 to service intervals. In all three frames
T 10 000, T;; = 6000, T;,, = 2000, T, 2000, the

average service and internal arrival intervals have length
200, and the average external arrival rate is 0.02 packets per
slot. The mean service time as a function of p (the utilization
was changed by varying the value of \;;) for these frames is
shown in Fig. 7.

There are several interesting features of these curves. We
first see the close match between the simulation points and
approximation, given by the solid line. thus assuring us that
the fluid approximation is accurate. This close fit for all
utilizations was found for all the examples we studied. This
accuracy arises from the fact that the variance of the internal
arrival (and external) process is limited, since there can be at
most one packet arrival per slot. The variation between the
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TIME
(c)

Fig. 6. Three randomly generated time frames.

mean system time for the three frames is very large, which
shows the dependency upon the ordering and size of the
intervals of the frame. For example, for p = 0.7, frame 1 has
a mean system delay of about 650 slots, whereas frame 3 has
a value of 2800, more than four times as much. The extreme
delays of the third frame arise from the long periods (9000,
10 000) and (0, 2000), during which there are no service
intervals. All packets arriving during these periods create a
backlog that cannot be depleted until much later in the frame.
On the other hand, the fortuitous placement of intervals in
frame 1 consists of groups of arrival intervals followed by

service intervals that allow an accumulated backlog to be
serviced quickly.

Even though there is a large variance in the curves, there is
a similarity in the shapes of the curves. The curves are very
well approximated by a piecewise linear function (this curve,
which was drawn by hand, is shown as a dashed line in Fig.
7). The slope changes in the piecewise linear approximation
occur when the arrival rate is so large that the arrivals to an
internal arrival interval cannot be serviced in the next set of
service epochs. For example, the change about the point p =
0.6 for frame 2 arises from the fact that for p > 0.6, some
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Fig. 8. A random time frame with reduced interval size.

arrivals over the interval (6000, 7800) must wait until the
next service set of intervals (1200, 2300) to be processed.
For lesser values of p, p < 0.6, these arrivals are serviced in
the interval (7800, 9100) and, thus, suffer less delay.
Naturally, as p increases, the proportion of messages that
must wait until (1200, 2300) to be serviced grows, and so
does the mean system delay. Each of the breaks in the
piecewise linear approximation can be explained in this
manner.

In Fig. 8 we have shown a frame for the same input
parameters, but where the average size of the service and
internal arrival intervals is equal to 20 time units instead of
200 as in those of Fig. 6. The corresponding mean system
delay curve is shown in Fig. 9. We see a marked decrease in
the mean system delay for this frame in comparision to the
previous set of frames. This demonstrates the dependency of
the mean system time upon the size of the intervals. If we
adjust the frame to minimize the mean system delay, as
shown in Fig. 10 (where for illustrative clarity we have only
shown a portion of the frame), the resultant delay is

approximately equal to 1 time unit throughout the entire
range of p. For such a frame, the majority of the arrivals to
the system are immediately serviced in the following service
interval.

IV. THE CAPACITY ASSIGNMENT PROBLEM

In the previous sections we determined, for a given frame,
an approximation for the mean system delay packets’
experience in passing through a node in a network using
spatial TDMA. We observed that the ordering, size, and
number of periods from the frame, allocated to internal
arrival and service periods, can have a great influence on the
mean system delay given in (1). In Section IV-A we
formulate the capacity assignment problem for these net-
works and give a linear program to determine feasibility of
the time vector ¢ in Section IV-B. The capacity assignment
program is very difficult to solve because the optimal
capacity assignment depends upon the time vector ¢ and the
ordering of the slots assigned to the cliques of the clique
cover. To obtain a computationally tractable approximate
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Fig. 10. An optimal time frame.

solution, we seek the optimal time vector ¢ over a random
assignment of the slots within the cycle 7. Thus, in Section
IV-B we develop an approximation to the mean system delay
for frames in which the ordering of the slots has been
randomly selected. This approximation is verified against
simulation in Section IV-D.

For reasons of mathematical tractability, we will assume
that elements of the time vector ¢ are continuous rather than
discrete variables. When the slot size is small in comparison
to the cycle time (the usual case), we believe this will not
produce significant errors.

A. Statement of Problem

We will assume that the total external traffic into the
network is given by v and that the expected flow of traffic
between any two nodes i and j, v;;, is known. A fixed route
between all possible source-destination pairs is also assumed

to be given. This allows us to calculate the average flow of .

traffic of class c through the ith node, which we denote as «;¢,
and also the total flow «; = X, o;°. We also assume that we
are given a clique cover and denote the length of the cycle by

T. Generalizing the notation of the previous section, we
denote T7,;¢ as the total time from the cycle during which
node i transmits class ¢ packets, and let Tj;; and T;,; be the
total time from the frame for idle and internal arrivals,
respectively, at node i. Observe that these quantities are
independent of the class of messages passing through node i,
since a message of any class can arrive during any internal
arrival period, and during idle periods neither receptions nor
transmissions can occur for any class of packets. For a given
clique cover and time vector £, one can easily calculate these
time intervals. Let A ;¢ be the given external arrival rate
(from the attached host) of class ¢ packets from node i and let
Aini¢ be the corresponding internal arrival rate (from the
network). By definition «;¢ = Ny ;T + Ny ;Tip. A time
vector t = (¢, &, * - *, #;), where t; = 0 is the time from the
frame allocated to clique C,, is said to be feasible if a) T, =
Ec(aic—)\ﬂ,i‘T)Vi, b) T,_i"Za,«‘Vi, ¢, and c) "t" = 2,4;1 t;
= T. For a given time vector ¢, the ordering of the frame is
the particular permutation of the slots from the time vector to
the cliques of the clique cover. For a given time vector there
are TV/T1X, t;! possible orderings. For a given feasible time
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vector ¢ and queue i, let D;(f) be the mean system delay of
class ¢ messages passing through the queue at node /. Each
D;i(¢) is to be calculated using the fluid approximation
outlined previously in Section II and a randomization of slot
allocations within a frame T which is discussed in Section
IV-C.

With these assumptions we state the capacity assignment
problem as ‘

Minimize
¢t and all possible orderings

o; a;” c
; " {2 - D; (t)}
A3)

subject to
=0 Vi
T—|ie] =0
Toi= Y (@~ AxT)=0 Vi
c

T, - a;=0

Before discussing the complexity of solving this problem,
let us first establish that the feasibility region is convex.
Suppose that £ and ¢’ are two feasible time vectors. To show
convexity we need to show that pt + (1 — p)t’ where 0 < p
=< 1 is also feasible. Let T;, {p) and T;;°(p) be the total
amount of time of internal arrival and service intervals from
the cycle for node i and class c for the time vector pt + (1 —
Dp)t’. The convexity of the feasible region then follows, since
both Ti, {p) and T, ,°(p) are either nondecreasing or nonin-
creasing in p. This implies that T}, (p) and T ;,°(p) reach
their minima at one of the end points (not necessarily the
same point for all ¢), each of which correspond, by
assumption, to a feasible time vector.

We should mention that one possible clique cover would
consist of all the maximal cliques in the network, and that the
optimization above would pick out ‘‘useless’’ cliques by
assigning them a ¢; = 0. There are, however, considerations
that would not suggest this approach. For example, a
designer of the network might prefer a particular clique cover
(for example, to attempt to synchronize the flow of traffic for
a particular source/destination pair), and also, increasing the
size of the clique cover also increases the computational
complexity of the program.

vi, c.

B. Feasibility of a Given Time Vector

In this section we establish a test for determining if a given
clique cover, for a given set of queues, corresponding flows
a;, and having a cycle of T slots, permits a feasible time
vector t. It is easy to create cases where, no matter how one
adjusts the components of a time vector #, some nodal queues
will have more flow into them than they can accommodate.
We have already seen that the feasible region for program (3)
is convex. This allows us then to formulate the feasibility
problem as a linear program:

@

Mini‘mize llell
subject to
» ;=0 vi
Toi—Y) (@ =N $T)=0 Vi
c

Ts',-C—Ot;CZO Vl, C.

If the solution to this linear program has |{¢|| < T, any
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vector with ¢ + e where € = O and ||e}]| = T - ||¢t|| is a
feasible time vector. Qtherwise  no feasible time vector for a
cycle length of T exists. We might add that an initial starting
point for solving this linear program is to set all components
of the time vector ¢ equal to ; = Max; o;T, and that the
program can halt as soon as the objective function ||¢}]
becomes less than 7.

C. Average Over Randomly Generated Frames

For a given ordering of slots within a frame, we have seen
from the previous sections that a fluid approximation gave
good results. Using this insight in this section, we will derive
a closed form expression for the mean system delay averaged
over a randomization of slot ordering within a cycle 7. As in
the queueing approximation section, we will concentrate on a
single class of packets passing through a single node in the
network, and suppress the subscript / and superscript ¢ from
our notations.

Suppose that for a given time frame, the number of slots
allocated to idle, internal arrival, and service intervals is
given by T}y, Ty, and Ty, respectively. Since we are assuming
a randomly selected frame, we will generate the frame one
slot at a time as outlined below. We will concentrate our
discussion in terms of service slots, since similar statements
can be made for the other kinds. Let P(J/) be the probability
that the ith slot is a service slot. For the first slot we have
P(1) = T,/T. Suppose now that we have already generated
T’ < Tslots of the frame and let T3y’, T;,', and T, be the
number of idle, internal, and service slots used in generating
the frame up to this time. The next slot, 7% + 1, will be
drawn with a uniform probability from the remaining
population of slots. At the 7’ + 1 step, the probability that
the next slot selected is a service period is given by P(T’ +
) =(Ts - T)WT - T, — Ty — Tyw') #= P(T" + 1.
However, if T is large, one would expect that the probability,
over most of the frame, of selecting a service period at each
step does not differ much from Py(1). Intuitively T, T4, and
T;, decrease at a rate in proportion to their sizes, and since
their sizes are assumed to be large, their relative proportions
do not alter significantly over most of the frame. Only when
most of the slots have been given out, i.e., when 7" is close
to T, will we expect a wide variation in P;. The main point is
that until this time, P(7T’ + 1) = Py1) and the major
component of the delay, as determined by the backlog curve
of the fluid approximation, has already been determined. We
thus conjecture that the delay obtained from generating the
frame using the initial probability, 7,/T, throughout the
frame generation process will not differ much from that
which is generated by allowing P(/) to change throughout
frame generation.

Assume that the probability that the next slot is an idle,
internal, or service slot is given by Py = T/ T, Py, = T/ T,
and P; = T,/T, respectively. We model backlog of packets
at a nodal queue for a particular class of messages as a
Markov chain where k, the backlog, is the state of the
Markov chain. The state diagram for this Markov chain is
shown in Fig. 11, where u;, i = 1, 2, is defined to be the
probability that the backlog increases by i in the next slot.
Similarly, d is the probability that the backlog decreases by 1
in the next slot. We have

u= Pid)\ex +Pin[)‘cx(l - Ain) + Ain(1 = Aen)] )
U= P'mxin)\ex
d=Py(1-\)

and the evolution of the height of the backlog curve is given
by a random walk with the above probabilities. The state
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transition equations are given by
(uy+ ux)Po=dP, ©®
(U +uy+ d)Py=uPy+ dP,
W+ us+ P =Py 2+ u 1Py +dPy k=2

where P; is the probability that the system is in state k. The
approximation is generated in the same way as in the fluid
approximation, namely, we find the area under the backlog
curve and then divide by the average number of customers
that enter the system. Suppose we knew the steady-state
probabilities P,. Points at a height k that move to ¥ + 1 incur
an increase in the area that is equal to X + 0.5, where the k¥
arises from the rectangle of height k£ and width 1, and the 0.5
from the triangle having unit width and height. Similar
calculations can be made for other steps and we can write the
average-area for each step as

A= Py +0.5u) + 3 PlunGi+0.5)+ i+ 1)+ d(i— 0.5)]
i=1
=Po(u2+0.5ul)+)3(u, +u;+d)
+(1 = Po) (g + 0.5, — 0.5d). %)

In these equations P is the average value of k. We can
calculate both P and P, by using standard transform methods
on equations (5). We find

_ 3u2+u1
P
d—2u2——u,
P0=d-2u2-u,
d

Substituting this in (2) yields
A=13(u|+u2+d). ®

Thus, we can calculate the mean system delay by dividing the
average number of messages that arrive in a randomly
selected slot. This equation is given below, where we
explicitly represent it as the mean system delay for class ¢
messages at the ith node:

T
Cexi T+ Nin,i Tin,i)
) Buy,i*+uy i)
(@ - 2uy, = u, )

for randomized slot allocations.
In the next section we will compare this formula to
simulation results.

De(t)=

i +u;f+d) 9

D. Comparing the Approximation with Randomly
Generated Frames

In this section we show the results when (9) is compared to
daia obtained when we generate random frames, and calcu-
late their mean system delay using the fluid approximation.
Our procedure was, for a given set of parameter values A,

State transitions for Markov chain.

Nos T Tim, and T, to generate 1000 random frames and
determine the minimum, maximum, mean, and variance of
the delays for these samples. We then compared the mean
system delay to (9) to determine if the approximation was
close. We performed this procedure for many different
selections of parameter values and all showed similar
behavior. To demonstrate this behavior we have selected two
sets to plot. Each of these sets had 7 = 1000. Set 1 has T;, =
400, T., = 100, T, = 500, A., = 0.1, and we varied \;, over
the range 0.02 < N\, < 0.38. Set 2 had T;, = 300, Ty =
200, T, = 500, \;, = 0.2, and A, varied over 0.20 < X, =
0.28. In- Fig. 12 we show how the approximation fared in
relationship to the mean of the generated frames. We see in
this figure that the approximation is very close to that of the
sample mean, and that only for very large values of p does it
break away from the generated frames. This is explained by
the fact that the approximation is more stochastic than the
randomly generated frames since it is given by a random
walk, and that for high p values the random walk does not
have a bound to its maximum height, in constrast to that of
the generated frames which do.

We can extract more information about the randomly
generated frames by looking at Table I.

In this table we list, for given values of p, for set 1, the
mean system delay, variance, and minimum and maximum
system delay that was found over the generated frames. We
see that although the difference between the minimum and
maximum system delay are often quite substantial (especially
for large p), the variance is usually very small. This implies
that the mean of all the generated frames is not much
different from the mean of a particular generated frame.
Another way to see this is to plot the coefficient of variation
as a function of p. In Fig. 13 we plot this, as well as the
variance, and see that the coefficient of variation is quite
small throughout all ranges of p. Using this approximation,
we are now in a position to formulate the capacity assignment
problem. We can now state the capacity assignment for the
case in which the frames have been randomly selected by
substituting the value of D;(¢) in (3) given by (9). Once again
the feasibility region is convex, and it can also be shown by
differentiating D;°( ) in (9) that the Hessian matrix of second
partials is positive semidefinite, and thus, the objective
function of (3), which is a convex combination of D;(?), is
also convex. We thus have a convex programming problem
which can be solved using any number of well-known
solution techniques [7].

V. CONCLUSIONS

In this paper we have defined a channel access protocol
that is assumed to operate for a packet radio environment in
which the locations of the nodes of the network are assumed
to be fixed and known. An approximation to the mean system
delay of packets in the network was developed and compared
to simulation, and a capacity assignment problem was
formulated. The protocol has several desirable properties.
Because it is collison-free, it simulates a traditional wire
network. This suggests that one can adapt protocols specifi-
cally designed for wire networks, such as flow control and
routing protocols, to operate in this radio environment.
Unlike wire networks, the capacity of a channel can be
algorithmically controlled, and thus, the network configura-
tion can be altered to adapt to a changing network environ-
ment. One could imagine having several capacity-plans in
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Fig. 12. Validating the approximation.
TABLE I
Utilization Mean Variance Min Time Max Time
0.240000 1019933 . 0.059683  0.882035 1.292519
0.280000 1.173994  0.076922  1.000477 1.418889
0.320000 1.345148  0.097195  1.122492 1.737658
0.360000 1.519549  0.123856  1.228147 . 2.035303
0.400000 1.723441  0.145813 1376908 2.425304
0.440000  1.919901  0.193245 1435101  2.563087
0.4%0000 2158198  0.218624  1.594046  3.138185
0.520000 2.434490  0.241395  1.902604 3.434316
0.560000 2.769812  0.325750  1.993773  4.291554
0.600000 3.172192  0.414819  2.390554 4.736672
0.640000 3.621928  0.522270  2.618372  5.937060
0.680000 4.222784  0.670217 2910517 7.552518
0.720000 4.881158  0.869889  3.210058 9.927224
0.760000 5.741120  1.051270  3.566030  9.822580
0.800000 7.005569  1.534562  3.751551 15.805325
0.840000 8.766911 2257944  5.079778 19.209290
0.880000 11.501342  3.460731  6.268044 32.473289
0.920000 15.094280  4.126865  7.613554 34.197002
0.960000 22.544538  7.200002  9.852835 65.090919
7 T T T T T T T T T
6 .
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Fig. 13. Variance and coefficient of variations for randomly generated

frames.
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which the capacity of the links in the network was changed
according to a schedule that mimics periodic alterations in
network traffic. Adding a new node in such a network and
readjusting the capacities in an optimal manner can be done
by executing a program to determine the new set of maximal
cliques and finding the optimal capacities. This could be
useful in the context of a local area network that had frequent
new subscribers.

There are many interesting extensions that are suggested
by this work. It would be of interest to find the optimal
ordering of the optimal time vector. This problem seems to
be very difficult, but an efficient solution technique would be
useful for extensions of this work. For example, if one
prioritized traffic according to source-destination traffic,
one would be faced with optimization problems similar to
those encountered in traffic light control [8]. Under these
conditions one would give priority to delays over certain
paths, and would attempt to synchronize the placement of
service slots so that messages arriving to a node would not
have to wait long before being transmitted along the
particular path. Naturally, synchronizing these slots along
one path causes longer delays in other parts of the network in
the same way traffic synchronization along one thoroughfare
causes other paths to be unsynchronized. The optimization
metric for this case would be a weighting, according to
priority, of the delays along paths in the network.

Although the protocol is designed to operate in geographi-
cally static networks, a variation of it might prove to be
useful in networks in which the nodes of the network move
slowly with respect to their transmission ranges. In such a
network, protocols would have to be executed to update the
set of cliques and assignment of slots. Determining a
practical protocol that is robust to network errors is an
interesting research problem.
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